AquaCell Systems
Contents

AquaCell Systems

Introduction to SuDS 4
Keeping you on top of legislation 5
Overview 6
Product Range Summary 8

Product Details 9
AquaCell Eco 9
AquaCell Prime 10
AquaCell Core 11
AquaCell Plus 12-13

Design Guidance 14-18
Installation Guidance 19
AquaCell Prime, Core and Plus: Construction Loads 19
AquaCell Eco: Construction Loads 19

Installation 20
Typical Soakaway 20
Installation Method 20
Typical Storage Tank 21
Installation Method 21
Silt Trap and Air Vent Termination 22

Typical Details 23
Top Connection for Air Vent 23
Side Connection for Air Vent 23
Connections to AquaCell Units 24
Connection Configurations 25
Soakaway – Non-Traffic Loading 26
Soakaway – Traffic Loading 27
On-Line Storage – Box Feed 28
On-Line Storage – Manifold Feed 29
On-Line Storage – Central Pipe Feed 30
Off-Line Storage – Box Feed 31
Off-Line Storage – Manifold Feed 32
Off-Line Storage – Central Pipe Feed 33
Soakaway or Storage Tank – With Silt Trap 34

Wavin Stormwater Management 35
To Achieve Optimum Stormwater Management 35
Other Wavin Stormwater Systems 35
The Wavin Stormwater Service 35

Product Details 36
Supplementary Items 36
Silt Traps 36
Ancillaries 37-38
Spares 39
Introduction to SuDS

Continuing urban development, a changing climate and the consequences of increased rainfall are all increasingly prominent issues on the political and environmental agenda and all drive the need to actively manage excessive rainfall with the use of SuDS (Sustainable Drainage Systems).

SuDS techniques recommend a number of ways to control water run-off as near to where it falls, via:

- Soft or natural SuDS
- Hard or engineered SuDS

SuDS should also aim to mimic nature, whilst focusing on 4 key areas (as shown below):
1. Controlling run-off / flood risk
2. Improving water quality
3. Providing amenities
4. Creating an environment for biodiversity

The CIRIA SuDS Manual gives guidance on all areas of SuDS and focuses on the cost-effective planning, design, construction, operation and maintenance of SuDS.

Which SuDS Techniques are best?

- SuDS should help maximise amenity and biodiversity, whilst also delivering key objectives to manage flood risk and water quality
- For any given site, it is often beneficial to include a combination of ‘soft’ and ‘hard’ SuDS to ensure maximum efficiency from the Sustainable Drainage System

How can the Wavin help with SuDS projects?

Wavin is well qualified to advise on how to comply with current and emerging regulation. We can aid specifiers, developers and contractors in responding to legislative demands as they pertain to flooding, sewage, urban drainage and sustainable resources use.

In particular, the proven qualities and performance of AquaCell systems not only support the achievement of SuDS, they can also help reinforce and enhance planning applications and enable development to proceed.

CIRIA SuDS Design
Source: The SuDS Manual (CIRIA)
Keeping you on top of legislation

Flood and Water Management Act 2010

Climate projections suggest that extreme weather will happen more frequently in the future. The Flood and Water Management Act is designed to reduce the risk of flooding and its consequences by providing for better, more comprehensive and co-ordinated water management, embracing groundwater, surface water and coastal erosion risk.

The Act gives DEFRA responsibility for establishing national standards for sustainable drainage and empowers local authorities to manage local flood risk – adapting and maintaining sustainable drainage schemes.

Specifically with regards to stormwater, Building Regulations Approved Document H3 stipulates that adequate provision should be made for rainwater to be carried from the roof of a building to either a soakaway, water course or sewer.

Building Regulation Part H (Drainage and Waste Disposal)

Building Regulation Part H embraces the guidelines for drainage and waste disposal that must be met in the UK.

Although Part H extends to rainwater drainage and solid waste storage, waste drainage issues are to the fore. The Building Regulations are designed to ensure that all foul water (waste from urinals, portals, food preparation water etc.) is properly disposed of to maintain a decent level of sanitation, promoting both personal and environmental health.

The regulations also highlight the importance of pollution prevention, working sewage infrastructure and sewage maintenance.

Planning Policy

Statement 25: Development and Flood Risk Responding to climate change, and replacing Planning Policy Guidance Note 25, the statement PPS25 sets out policy to ensure that flood risk is taken into account at all stages of the planning process and that inappropriate development in areas at risk of flooding is avoided.

The policy directs development away from areas of highest risk and where new development is, exceptionally necessary in such areas, aims to make it safe without creating an increase in flood risk elsewhere and, where possible, reduce flood risk overall.

The EU Water Framework Directive

Nearly half the EU population lives in ‘water-stressed’ countries, caused by high extraction from freshwater sources, and demand is growing all the time.

The EU Water Framework Directive introduces a new legislative approach designed to better manage and protect water resources, based not on national or political boundaries but on the natural formations of river basins.
Overview
AquaCell Systems

The AquaCell range of geocellular systems are a fully tried and tested, BBA approved, modular technique for managing excessive rainfall.

Applications
The AquaCell range can be used as either a temporary storage tank or as a soakaway, and is suitable for applications including:
- Landscaped areas
- Parks
- Domestic gardens
- Residential developments
- Car parks & roads
- Industrial/commercial areas

The AquaCell Range
There are four types of AquaCell unit. Each can be used as a standalone system or different unit types can be mixed and matched together in layers to value engineer the most cost effective solution.

All AquaCell units have identical dimensions (1m x 0.5m x 0.4m), but they are manufactured to perform differently. The type of unit, or combination of units required will depend on factors such as the load application, overall installation depth and site conditions.

Features & benefits
The following are applicable to all AquaCell units:
- Fully BBA Approved – Eco/Prime/Core/Plus are all approved under certificate No. 03/4018
- Modular, lightweight and versatile
- Easy to handle and quick to install
- Proven clip and peg connection system
- 95% void (each unit holds 190 litres of water)
- Can be brick-bonded for extra stability
- Units can be mixed and matched together for optimum performance
- Safer than open or above ground storage structures
- Full range of ancillaries
- Can be used as part of a SuDS scheme to help reduce flood risk

Environmental Benefits
In addition, the AquaCell range can also offer the following environmental benefits:
- Significantly reduced flooding risk
- Controlled, reduced-volume release of stormwater into existing sewer systems or watercourses
- Recharging of local groundwater (if infiltration/soakaway application)
- Aerobic purification to improve water run-off quality
- Sustainable, cost effective management of the water environment
Eco is manufactured from specially reformulated, recycled material and has been designed for shallow, non-trafficked, landscape applications.

Prime is the latest addition to the AquaCell range, manufactured from specially reformulated, recycled material. It is ideal for use in both shallow and deep applications, subject to either regular traffic loading – such as car parks (for vehicles up to 12 tonnes) – or for landscaped areas.

Core has been designed for use in deep applications, subject to both regular and heavy traffic loadings, such as cars and HGV’s (for vehicles up to 44 tonnes).

Plus has been designed primarily for use in applications where inspectability is required, and is suitable for use in all applications from landscaped areas to heavily trafficked areas (for vehicles up to 44 tonnes).

Optimise tank and soakaway designs with the AquaCell Configurator Tool

The AquaCell configurator tool aids and speeds the efficient design of stormwater tank or soakaway solutions. The tool guides users through a step-by-step specification process and, based on responses, will recommend the optimum design, based on the loadings, depths and site conditions of each project. The tool generates a PDF of the design for easy download and can store the data online for future reference. To start using the tool or to learn more visit: myportal.wavin.co.uk/tools
The Product Range Summary below lists all components available to be used in conjunction with the AquaCell range.

Abbreviations

P/E – Fittings with both ends plain or with one plain end and one special end.

S/S – Fittings with one or more ring-seal or push-fit sockets, but always one plain or special end.

D/S – Fittings with ring-seal or push-fit sockets at all ends.

▲ British Board of Agrément – BBA logo identifies non-Kitemarked fittings covered by British Board of Agrément Certificate

<table>
<thead>
<tr>
<th>Table 1: The Product Range Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Description</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Modular Units</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Silt Traps</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ancillaries</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Spares</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Product Details
AquaCell Eco

Application

AquaCell Eco is manufactured from specially reformulated, recycled material and has been specifically designed for shallow, non-trafficked, landscaped applications. AquaCell Eco is NOT suitable for locations subject to high water tables.

AquaCell Eco is typically suitable for installations to a maximum depth of 1.5 metres, to the base of the units from ground level, with a minimum cover depth of 0.3 metres, (Wavin’s recommendation, is to allow a cover depth of 0.5 metres).

Any installation using AquaCell Eco must NOT be subjected to additional loading at any time. Trafficking by construction plant on site, including mechanical equipment, must be avoided.

If trafficking of the buried tank by construction plant or, other vehicles is unavoidable, the installation should be constructed using AquaCell Core units (see page 11).

The width of an AquaCell Eco installation should not exceed 12 metres to allow for mechanical backfilling without loading. There is no limit to the length of the installation.

Features and benefits

- Manufactured from specially reformulated, recycled material
- Suitable for both soakaway and attenuation applications
- Proven vertical loading capacity of: 17.5 tonnes/m²
- Proven lateral loading capacity of: 4.0 tonnes/m²
- Integral “hand holds” for ease of carrying/handling
- Black in colour, for ease of identification
- BBA approved – Certificate No 03/4018

Material: Reformulated polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>W (mm)</th>
<th>H (mm)</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>6LB025</td>
<td>500</td>
<td>400</td>
<td>1000</td>
</tr>
</tbody>
</table>

Maximum installation depths (to base units) and minimum cover depths (1)

<table>
<thead>
<tr>
<th>Typical soil type</th>
<th>Typical angle of shearing</th>
<th>Maximum depth of installation (m)</th>
<th>Minimum cover depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiff over-consolidated clay (e.g. London clay)</td>
<td>24°</td>
<td>0.95</td>
<td>0.30</td>
</tr>
<tr>
<td>Normally consolidated silty, sandy clay (e.g. alluvium, made ground)</td>
<td>26°</td>
<td>1.05</td>
<td>0.30</td>
</tr>
<tr>
<td>Loose sand and gravel</td>
<td>29°</td>
<td>1.2</td>
<td>0.30</td>
</tr>
<tr>
<td>Medium dense sand and gravel</td>
<td>33°</td>
<td>1.5</td>
<td>0.30</td>
</tr>
<tr>
<td>Dense sand and gravel</td>
<td>38°</td>
<td>1.9</td>
<td>0.30</td>
</tr>
</tbody>
</table>

(1) These values relate to installations where the groundwater is a minimum of one metre below the base of the excavation. AquaCell Eco units should not be used where groundwater is present.

Source: BBA
Product Details
AquaCell Prime

Application

AquaCell Prime is manufactured from specially reformulated, recycled material. It is ideal for use in both shallow and deep applications, subject to either regular traffic loading – such as car parks (for vehicles up to 12 tonnes) or for landscaped areas.

Typically AquaCell Prime is suitable for installations to a maximum depth of 3.70m in landscaped areas (3.45m trafficked) to the base of the units from ground level, in best soil conditions.

Features and benefits

- Manufactured from specially reformulated, recycled material
- Suitable for both soakaway and attenuation applications
- Suitable for regular traffic loading, e.g. car parks
- Proven vertical loading capacity of: 45.6 tonnes/m²
- Proven lateral loading capacity of: 7 tonnes/m²
- Grey in colour, for ease of identification
- BBA approved – Certificate No 03/4018
- Ideal for major attenuation and infiltration schemes

Maximum installation depths (to base units)

<table>
<thead>
<tr>
<th>Typical soil type</th>
<th>Typical angle of shearing resistance (1)/(2) (°)</th>
<th>Maximum depth of installation – to base of units (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With groundwater at 1m below ground level and units wrapped in geomembrane</td>
<td>Without groundwater below base of units (normal case)</td>
</tr>
<tr>
<td></td>
<td>Trafficked areas (cars only) (3)</td>
<td>Non-trafficked areas</td>
</tr>
<tr>
<td>Stiff over-consolidated clay (e.g. London clay)</td>
<td>24°</td>
<td>1.60</td>
</tr>
<tr>
<td>Normally consolidated silty, sandy clay (e.g. alluvium, made ground)</td>
<td>26°</td>
<td>1.75</td>
</tr>
<tr>
<td>Loose sand and gravel</td>
<td>30°</td>
<td>1.95</td>
</tr>
<tr>
<td>Medium dense sand and gravel</td>
<td>34°</td>
<td>2.04</td>
</tr>
<tr>
<td>Dense sand and gravel</td>
<td>38°</td>
<td>2.14</td>
</tr>
</tbody>
</table>

(1) Loosening of dense sand or softening of clay by water can occur during installation. Designer to factor in when selecting φ value.
(2) The design is very sensitive to small changes in the assumed value of φ, therefore, it should be confirmed by a chartered geotechnical engineer. In clay soils, it may be possible to utilise cohesion in some cases.
(3) Applicable for car parks or other areas trafficked only by cars or occasional refuse collection trucks or similar vehicles (typically one per week).

Assumptions made are: ◊ ground surface is horizontal ◊ shear planes or other weaknesses are not present within the structure of the soil

Source: BBA

Material: Reformulated polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>6LB075</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>
Product Details
AquaCell Core

Application

AquaCell Core has been designed for use in deep applications, subject to regular and heavy traffic loadings, e.g. cars and HGV’s (for vehicles up to 44 tonnes). AquaCell Core can also be used for deep soakaways and landscaped applications.

Typically for use down to depths of 4.25m in landscaped areas (4.1m trafficked by cars and 4m trafficked by HGV’s) to the base of the units from ground level, in best soil conditions.

Trafficking by heavy construction plant on site, including mechanical equipment, must be avoided until the minimum cover depth of 0.9 metres is in place.

Features and benefits

- Suitable for regular and heavy traffic loadings
- Proven vertical loading capacity of: 56 tonnes/m²
- Proven lateral loading capacity of: 7.7 tonnes/m²
- Dark blue in colour, for ease of identification
- BBA approved – Certificate No 03/4018
- Ideal for all types of shallow and deep projects including major attenuation and infiltration schemes

Maximum installation depths (to base units)

<table>
<thead>
<tr>
<th>Typical soil type</th>
<th>Typical angle of shearing resistance (°)</th>
<th>Maximum depth of installation – to base of units (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>With groundwater at 1m below ground level and units wrapped in geomembrane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trafficked areas (cars only) (2) Non-trafficked areas</td>
</tr>
<tr>
<td>Stiff over-consolidated clay (e.g. London clay)</td>
<td>24°</td>
<td>1.65 1.75</td>
</tr>
<tr>
<td>Normally consolidated silty, sandy clay (e.g. alluvium, made ground)</td>
<td>26°</td>
<td>1.70 1.80</td>
</tr>
<tr>
<td>Loose sand and gravel</td>
<td>29°</td>
<td>1.80 1.90</td>
</tr>
<tr>
<td>Medium dense sand and gravel</td>
<td>33°</td>
<td>1.90 2.00</td>
</tr>
<tr>
<td>Dense sand and gravel</td>
<td>38°</td>
<td>2.05 2.15</td>
</tr>
</tbody>
</table>

(1) Loosening of dense sand or softening of clay by water can occur during installation. Designer to factor in when selecting value.
(2) The design is very sensitive to small changes in the assumed value of φ, therefore, it should be confirmed by a chartered geotechnical engineer. In clay soils, it may be possible to utilise cohesion in some cases.
(3) Applicable for car parks or other areas trafficked only by cars or occasional refuse collection trucks or similar vehicles (typically one per week).

Assumptions made are: ○ ground surface is horizontal ○ shear planes or other weaknesses are not present within the structure of the soil

Source: BBA

Material: Polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>6LB100</td>
<td>W 500 H 400 L 1000</td>
</tr>
</tbody>
</table>

Wavin AquaCell Systems PIM
Product Details

AquaCell Plus

Application

AquaCell Plus has been designed primarily for use in applications where inspectability is required, and is suitable for use in all applications from landscaped areas to heavily trafficked areas (for vehicles up to 44 tonnes). The units can be used in combination with AquaCell Prime and Core (and Eco if there is at least one layer of Prime or Core in between the Plus and Eco layer).

Extra lateral loading capacity allows installation at greater depths. Integral inspection channels in each unit combine to create viewing channels for the full length of the installed structure.

Typically for use down to depths of 5.08m in landscaped areas (4.78m trafficked by cars and 4.48m trafficked by HGV’s) to the base of the units from ground level, in best soil conditions. Trafficking by heavy construction plant on site, including mechanical equipment, must be avoided until the minimum cover depth of 0.9 metres is in place.

Features and benefits

- Suitable for extra deep installations
- Inspectable (supplied with end cap for use when an inspection channel is not required)
- Proven vertical loading capacity of: 65 tonnes/m²
- Proven lateral loading capacity of: 8.5 tonnes/m²
- Light blue in colour, for ease of identification
- BBA approved – Certificate No 03/4018

Maximum installation depths (to base units)

<table>
<thead>
<tr>
<th>Typical angle of shearing resistance (1)(2) (°)</th>
<th>Maximum depth of installation – to base of units (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-trafficked areas</td>
</tr>
<tr>
<td></td>
<td>Cars (3)</td>
</tr>
<tr>
<td>24°</td>
<td>2.96</td>
</tr>
<tr>
<td>26°</td>
<td>3.18</td>
</tr>
<tr>
<td>28°</td>
<td>3.42</td>
</tr>
<tr>
<td>30°</td>
<td>3.69</td>
</tr>
<tr>
<td>32°</td>
<td>3.98</td>
</tr>
<tr>
<td>34°</td>
<td>4.31</td>
</tr>
<tr>
<td>36°</td>
<td>4.68</td>
</tr>
<tr>
<td>38°</td>
<td>5.08</td>
</tr>
</tbody>
</table>

(1) Loosening of dense sand or softening of clay by water can occur during installation. Designer to factor in when selecting value.
(2) The design is very sensitive to small changes in the assumed value of ϕ, therefore, it should be confirmed by a chartered geotechnical engineer. In clay soils, it may be possible to utilise cohesion in some cases.
(3) Applicable for car parks or other areas trafficked only by cars or occasional refuse collection trucks or similar vehicles (typically one per week).

Assumptions made are:
- ground surface is horizontal
- shear planes or other weaknesses are not present within the structure of the soil

Source: BBA

Material: Polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>6LB200</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>
Product Details

AquaCell Plus

AquaCell Plus: for inspectability

By aligning AquaCell Plus units end-to-end, full length viewing channels can be created – allowing for CCTV inspection if required. These are created in the bottom layer of an AquaCell tank installation.

The units can be used in combination with AquaCell Prime and Core (and with Eco if there is at least one layer of AquaCell Prime or Core in between the Plus and Eco layer).

NOTE: For any AquaCell Plus units on the perimeter of a structure that are NOT required for inspection access, the open ends of the integral inspection tunnels should be fitted with the end caps provided.

Inspection chambers

An inspection chamber should precede the inlet pipework for the AquaCell structure.

A silt trap or hydro-dynamic separator prior to the inspection chamber is also recommended.

For on-line installations the following Chambers are recommended:
— Down to 3m Wavin Non-Entry Inspection Chambers
— Down to 5m Wavin Range 600 Inspection Chambers, or a traditional manhole*

*where inlet pipework is replaced by AquaCell units acting as flow conduit.

For off-line installations:
— Manhole with in-built flow control

Recommendation: If installing any Wavin Non-Entry Inspection Chamber, deeper than 1.2 metres, ensure that the cover and frame includes a 350mm restrictor to prevent man entry.

Inspection and maintenance

CCTV inspection at every inspection point is recommended:
— after every major storm
— at regular intervals according to the specific maintenance plan for the site

Silt traps prior to inlet pipework should be routinely inspected and cleaned out to minimise debris reaching the tank. It is important to prevent construction silt from entering the AquaCell structure.
Design Guidance
AquaCell Units

Infiltration or attenuation?
The AquaCell range can be used either as:
1. A soakaway whereby the units will be installed in suitable pervious soils so the units can be wrapped in a geotextile to allow infiltration of the stormwater into the surrounding ground, or
2. As an attenuation tank in impervious ground (e.g. clay) where infiltration is not possible, here the units are encapsulated in a geomembrane (which is in turn wrapped in a protective geotextile layer) so that the structure can hold the stormwater temporarily until local drainage flows can accept it for normal disposal at a permissible outflow rate.

Site assessment
Ground conditions may be established as part of a geotechnical assessment. This may include tests for infiltration and ground water level.

If there is no confirmation that such assessments have been conducted, or resulting conclusions are unavailable, a trial pit will be required in accordance with BRE 365.

For further information and guidance, please contact the Wavin Technical Design Team.

Infiltration (soakaways)
According to the principals of SuDS, wherever possible stormwater should be drained back into the ground via a soakaway as the first priority. A site must meet BOTH of the following criteria for infiltration to be possible:

- The underlying soil surrounding the proposed installation is sufficiently permeable
- The seasonally high water table is a minimum of 1 metre below the base of the proposed installation

If either of these criteria is not met, or cannot be confirmed for any reason, a soakaway system may not be suitable for the application, in which case a storage tank must be used.

Attenuation (Storage tanks)
A storage tank may be designed to be online or offline (see pages 28-33 for typical details). However, if the site is subject to groundwater or a high water table, it is important to ensure that the tank is not vulnerable to flotation. Sufficient weight from soil, or other covering placed over the AquaCell units, must be sufficient to counter any buoyancy uplift force from the rising groundwater level.
Important design considerations for geocellular structures

Rising rainfall levels and increased focus on SuDS compliance, have led to a sharp increase in the use of modular units to create underground structures for infiltration or the temporary storage of stormwater.

However, not all currently available systems have the proven performance characteristics necessary to meet the wide range of complex underground geocellular applications.

The Wavin range of AquaCell units provide assured performance, since all strength and hydraulic capabilities have been verified by independent testing and all units are fully BBA approved.

To guarantee the structural integrity of an engineered drainage system, any underground structure must be strong enough to support the loads to which it will be subjected without any unacceptable deflection.

The correct choice of geocellular unit must have appropriate proven top (vertical) and side (lateral) load bearing capacity and deflection characteristics to suit site conditions.

The five key site considerations to be noted when designing a geocellular structure are:
1. Depth of cover (See page 16)
2. Soil type
3. Surface finishing
4. Presence of groundwater
5. Type of traffic/loading

The combination of these 5 factors effectively means that the required characteristics of a geocellular structure to be installed under a trafficked location (for example) will be very different from that under a landscaped/low-loaded location.

Two typical examples are given below.

EXAMPLE A: Landscaped/non-trafficked location and 0.3m cover depth. Typically requires minimum vertical strength of 17.5 tonnes/m²

EXAMPLE B: Car park with occasional light delivery traffic and between 0.71 – 0.75m cover depth. Typically requires minimum vertical strength of 40 tonnes/m²
Design Guidance
AquaCell Units

Hydraulic Design

All AquaCell units have identical dimensions: 1m x 0.4m x 0.5m, have a nominal void ratio of 95% and each holds 190 litres of water. Hydraulic calculations are accordingly the same for AquaCell Eco, Prime, Core and Plus.

Structural design however, requires careful consideration of loading factors specific to each location – see CIRIA C680 and CIRIA C737 for further guidance.

Structural Design – Installation & cover depths

Each AquaCell unit has been designed to have specific loading capacities (see pages 9-12) that define the maximum depth parameters for which they are suitable.

Minimum depth of cover varies according to whether or not the installation will be subject to trafficking by cars/HGVs.

However, in some situations, installations may have to be located with greater cover depths. Reasons may include:

- Deep-running drainage network
- Other buried services running above tank location
- Installation into banked/ sloping ground
- Upper layer of clay preventing infiltration.

The table shows a summary of typical cover depths and installation depths as a guide.

Typical minimum cover depths and maximum installation depths

<table>
<thead>
<tr>
<th>Location type</th>
<th>Minimum cover depths</th>
<th>Maximum installation depths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AquaCell Eco</td>
<td>AquaCell Prime</td>
</tr>
<tr>
<td>Landscaped/non-trafficked areas</td>
<td>0.3m³</td>
<td>0.3m³</td>
</tr>
<tr>
<td>Car parks, vehicle up to 12000 kg* gross mass</td>
<td>n/a</td>
<td>0.71m</td>
</tr>
<tr>
<td>HA/HGV loading *</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Maximum depth to base of unit (Landscaped)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum depth to base of unit (Trafficked)</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

(a) For specific advice on cover depths for heavier loadings/HGV applications, contact Wavin Technical Design on 0844 856 5165.

(b) 0.3 is minimum depth for AquaCell Eco, although 0.5m cover is recommended to prevent accidental damage. If construction plant is to be used on site, extra protection may be needed.

(c) Allowable maximum depth to base of bottom layer of units is dependent on soil type, angle of shearing resistance, loadings, and groundwater level. The above depths are based on 38° angle of shearing resistance and no groundwater.

The height of any tank should not exceed 2m (5 units). If you require a tank that exceeds this, please contact Wavin Technical Design for guidance:

T: 0844 856 5165 E: technical.design@wavin.co.uk
Minimum cover and maximum installation depths to base of units from ground level, in best soil conditions

This chart shows how deep each unit can be used for different applications in best soil conditions.

Key:

- ECO
- PRIME
- CORE
- PLUS

Note: The AquaCell units can also be used in combination with each other, see page 18 for details.
Design Guidance
AquaCell Units

Mix and match

Although all AquaCell units have identical dimensions, and a high nominal void ratio of 95%, they are manufactured to perform at a range of depths, dependent on soil type, angle of shearing resistance, loading and ground water levels. For optimum performance the units can be mixed and matched (in layers) to value engineer the most effective design (in cost and performance terms) for each installation. For example, in a landscaped application if you needed to install a tank or soakaway that is deeper than 1.5m, you could install layers of AquaCell Prime underneath the AquaCell Eco. See below illustrations showing examples of how the AquaCell units can be mix and matched together. For advice on how to optimise a tank or soakaway design using more than one type of AquaCell please contact Wavin Technical Design.

Note: AquaCell Eco cannot be used directly with AquaCell Plus therefore there must be a layer of either AquaCell Prime or Core between them.

Brick bonding – for extra stability

When assembling a geocellular structure that comprises two or more layers, it is recommended that AquaCell units are placed in a ‘brick-bonded’ configuration for extra stability.

This helps minimise continuous vertical joints in the assembly, and gives the structure extra stability.

A significant advantage of AquaCell unit design is that brick bonding placement does not require extra connectors.

All four AquaCell units may be placed in this way, unless inspection channels and cleaning access are required using AquaCell Plus.

AquaCell Plus units incorporate integral inspection channels. These are designed for combined alignment to create viewing tunnels at the base of an assembled structure (see page 13).

Typical examples of Mix & Match with AquaCell

<table>
<thead>
<tr>
<th>Landscaped</th>
<th>Cars</th>
<th>HGV’s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- ECO
- PRIME
- CORE
- PLUS

Example of AquaCell being brick bonded

![Example of AquaCell being brick bonded](image4)
Installation Guidance
AquaCell Units

AquaCell Prime, Core and Plus: Construction Loads

Construction plant such as excavators can impose significant loads on any AquaCell unit. The following guidelines should be observed:

- Tracked excavators (not exceeding 21 tonnes weight) should be used to place fill over the AquaCell units when the geotextile or geomembrane wrapping has been completed.
- At least 300mm of fill should be placed before the excavators or trucks delivering the backfill are allowed to traffic over the installed units.
- Compaction plant used over the AquaCell units should not exceed 2300kg/metre width. This will allow the compaction of Type 1 sub-base in 150mm layers over the units in accordance with the Specification for Highways Works.
- All other construction plant should be prevented from trafficking over the system once it is installed and surfacing completed, unless a site specific assessment demonstrates that it is acceptable.
- In particular cranes should not be used over, or place their outriggers over the system.

AquaCell Eco: Construction Loads

As AquaCell Eco is designed for landscaped and non-loaded applications, certain precautions are recommended on site to prevent damage to the units through excess loading.

Manual assembly

Whilst assembling the tank, it may be necessary to walk on top of previously laid AquaCell units. Therefore care should be taken not to damage the edges of the units.

Backfilling

When backfilling AquaCell Eco installations:

- Machines placing the material must be located OFF the units.
- Only light compaction should be applied to the material.
- Backfill with suitable, stone-free, as-dug material.
- First layer should be 300mm thick before using any compaction plant.
- NO vibratory mechanism should be used for compacting this first layer.
- Compaction plant must not exceed 2300kg per metre width.

Construction traffic on site

Once backfilled, if construction plant (e.g. excavators or loaders) are likely to run over the installation, ensure that:

- MINIMUM protective cover should be 500mm well-compacted granular material.
- Only tracked excavators can be used and MUST NOT weigh more than 14 tonnes.
- HGVs MUST NOT run over installed AquaCell Eco units.

Manual assembly

All ancillaries and adaptors (see pages 36-39) can be used with either the AquaCell Eco, Prime, Core or Plus units, except the 225mm Flange Adaptor (6LB106) which must only be used with AquaCell Prime, Core or Plus.

The 150mm Flange Adaptor (6LB104) should only be used when constructing an air vent on the top surface of an AquaCell Eco unit. The adaptor should not be used to connect inlet pipes to the side of an Eco unit.
Installation
AquaCell Units

Typical Soakaway Installation Method

Typical installation procedure

1. Excavate the trench to the required depth ensuring that the plan area is slightly greater than that of the AquaCell units.
2. Lay 100mm bed of coarse sand or non angular granular material, level and compact.
3. Lay the geotextile* over the base and up the sides of the trench.
4. Lay the AquaCell units parallel with each other. In multiple layer applications, wherever possible, continuous vertical joints should be avoided. AquaCell units can be laid in a 'brick bonded' formation (i.e. to overlap the joints below) – see page 18. For single layer applications use the AquaCell Clips and for multi layers use the AquaCell Clips and the AquaCell Shear Connectors (vertical rods).
5. Fix the Adaptors to the AquaCell units as required and connect pipework.
6. In order to prevent silt from entering the tank, clogging inlet pipework and reducing storage capacity, it is recommended that the Domestic Silt Trap (6LB300) or the standard Silt Trap (6LB600) is installed prior to the inlet pipework – see page 26 for installation guidelines.
7. Wrap and overlap the geotextile covering the entire AquaCell structure.
8. Lay 100mm of coarse sand or non angular granular material between the trench walls and the AquaCell structure and compact.
9. Lay 100mm of coarse sand or non angular granular material over the geotextile and compact.
10. Backfill with suitable material.
11. Rainwater from roof areas may discharge directly into the soakaway but rainwater from carparks must discharge through a catchpit manhole and/or a petrol interceptor.

Example shows the use of AquaCell Eco. However, a soakaway can also be installed as shown using either of the other versions of AquaCell units (Prime, Core or Plus) as appropriate.

*The geotextile should be selected according to specific site conditions. Typically, however, a 300g non-woven material will be suitable. Specialist advice should be sought if surrounding soil characteristics exhibit a high degree of fines/low infiltration capacity and/or there is a high risk of damage from ground contaminants.
Typical Storage Tank Installation Method

Typical installation procedure

1. Excavate the trench to the required depth ensuring that the plan area is slightly greater than that of the AquaCell units.
2. Lay 100mm bed of coarse sand, level and compact.
3. Lay the geotextile over the base and up the sides of the trench.
4. Lay the geomembrane on top of the geotextile over the base and up the sides of the trench.
5. Lay the AquaCell units parallel with each other. In multiple layer applications, wherever possible, continuous vertical joints should be avoided. AquaCell units can be laid in a ‘brick bonded’ formation (i.e. to overlap the joints below) – see page 18. For single layer applications use the AquaCell Clips and for multi layers use the AquaCell Clips and the AquaCell Shear Connectors (vertical rods).
6. Wrap the geomembrane around the AquaCell structure and seal to manufacturers recommendations.*
7. If side connections into the AquaCell units is required, (other than the preformed socket), use the appropriate Flange Adaptor (6LB104 or 6LB106). Fix the flange adaptor to the unit using self-tapping screws. Drill a hole through the Flange Adaptor and connect the pipework. (6LB106 should not be used with AquaCell Eco).
8. In order to prevent silt from entering the tank, clogging inlet pipework and reducing storage capacity, it is recommended that the Domestic Silt Trap (6LB300) or the standard Silt Trap (6LB600) is installed prior to the inlet pipework – see page 22 for installation guidelines.
9. Wrap and overlap the geotextile covering the entire AquaCell structure, to protect the geomembrane.
10. Lay 100mm of coarse sand between the trench walls and the AquaCell units and compact.
11. Lay 100mm bed of coarse sand over the geotextile and compact. Backfill with suitable material.

NB: A storage tank must be vented, and it is recommended that one vent pipe, 110mm in diameter is provided per 7,500 square metres of impermeable catchment area on a site, see page 22 for design.

Example shows the use of AquaCell Prime. However, a storage tank can also be installed as shown using any of the other versions of AquaCell units (Eco, Core or Plus) as appropriate.

*For large scale, deep installations a 1mm thick geomembrane is recommended and joints should be sealed using proprietary welding techniques. For further details contact Wavin Technical Design.
Silt Trap

1. Place the Silt Trap (6LB600) on a minimum of 100mm bed as per pipe bedding specification. Ensure that the trap is as close to the AquaCell unit as possible and in a suitable position to allow pipework connection.

2. Connect the relevant pipework in accordance with standard pipe installation guidelines.

3. Surround the sides of the Silt Trap with 150mm of ‘as dug’ material, with no particle sizes larger than 40mm.

4. Fit relevant cover and frame.

NOTE: When surrounded by a concrete plinth (150mm x 150mm) the 4D920 Cover and Frame can be used in situations with a loading of up to 50kN (5 tonne).

Typical Air Vent design

Installation

AquaCell Units

NOTE: It is recommended that all connections and air vent installations in storage applications (using geomembrane) are made using a Flange Adaptor.

Adhesive or double sided tape should be used between the geomembrane and the flange plate to ensure a watertight seal.

NOTE: It is recommended that one vent pipe, 110mm in diameter, is provided per 7,500 square meters of impermeable catchment area on a site. Please contact Wavin Technical Design for further details.
Typical Details
AquaCell Units

Top Connection for Air Vent

Connect into the top of the AquaCell unit, using Flange Adaptor.

Connect suitable pipework to form air vent
Flange Adaptor (6LB104)
Geomembrane wrap
AquaCell Units
Coarse sand or non angular granular material base and surround

Typical installation procedure
1. Fix Flange Adaptor to the AquaCell unit with self tapping screws.
2. Cut through the geomembrane.
3. Insert pipework into Flange Adaptor to form air vent.

Side Connection for Air Vent

Connect into the side of the AquaCell tank unit using standard Reducer.

Geomembrane wrap
AquaCell Units
Coarse sand or non angular granular material base and surround

Typical installation procedure
1. Fix OsmaDrain Reducer to the AquaCell tank.
2. Cut through the geomembrane.
3. Insert pipework into OsmaDrain Reducer to form air vent.
Typical Details

AquaCell Units

Connections to AquaCell Units

Connection for soakaway application using either the pre-formed socket (as shown below) or standard adaptors into pre-formed socket*.

*NOTE: For pipework other than 160mm OsmaDrain, these adaptors can be used to connect to the following:
- 6TW141: TwinWall S/S Adaptor connects to 150mm TwinWall
- 6D099: OsmaDrain Adaptor connects to 110mm OsmaDrain
- 4D916: OsmaDrain PE Adaptor connects to 160mm OsmaDrain
- 6UR141: UltraRib S/S Adaptor connects to 150mm UltraRib
- 6D129: OsmaDrain S/S Adaptor connects to 150mm SuperSleve clay. (Use an appropriate reducer, as required, e.g. 6D099)

Connection for storage application using Flange Adaptor at points other than pre-formed socket, (for AquaCell Prime, Core or Plus).

Installation procedure

1. Fix Flange Adaptor to the AquaCell unit with self tapping screws.
2. Cut through the geomembrane.
3. Insert pipework into Flange Adaptor.

*NOTE: AquaCell Eco is not suitable for side connection using a Flange Adaptor.
Connection Configurations

The connections shown here in schematic form, are the typical options used to connect AquaCell units to control chambers. They provide a controlled feed into and out of the AquaCell units, and are used for either infiltration or attenuation schemes.

Manifold connection

Using standard pipes and fittings

150mm/225mm UltraRib/SlipSleeve

Pipe

Precast concrete chamber sections and cover slab

150mm concrete surround

NOTE: The configuration of pipes in a manifold arrangement will vary to suit site conditions and anticipated stormwater intensity. See pages 29 and 32 for this option in context.

Box connection

Using AquaCell units for fast water transfer

Pipe

Precast concrete chamber sections and cover slab

150mm concrete surround

NOTE: See pages 28 and 31 for this option in context.

Central pipe connection

Using standard perforated Wavin TwinWall pipe and fittings

Pipe

Precast concrete chamber sections and cover slab

150mm concrete surround

NOTE: See pages 30 and 33 for this option in context.
Soakaway – Non-Traffic Loading

Trench soakaway

Notes
1. Soakaways should be sited at least 5m away from the building (Ref BS EN 752-4).
2. The exact size and shape of the soakaways are to be determined once all the necessary calculations have been produced.

*For information regarding cover depths and installation depths, see page 17.

Key
S = AquaCell units soakaway (See note 2)
T = 250mm Dia Silt Trap
Soakaway – Traffic Loading

Soakaway

For minimum depth of cover contact Wavin

160/150mm OsmaDrain or SuperSleve pipe + adaptor

Silt Trap (6LB600)

AquaCell Eco, Prime or Core (depending on application and site)
What happens to the water?

1. The water level in the upstream control chamber rises.
2. Then, during a storm event, the AquaCell storage assembly quickly fills with water via the AquaCell feed connection.
3. After storm event, water flows back out of the AquaCell storage assembly, finding its own level, and into the downstream control chamber.
4. The water then flows through the vortex flow control valve.
On-Line Storage – Manifold Feed

Long section

- Cover and frame
- Precast concrete chamber sections and cover slab
- Water flow
- Sump
- AquaCell unit assembly

Typical vent detail

- Open grating
- Ventilation box
- Water flow
- 150mm concrete surround
- Coarse sand or non-angular granular material base and surround

Plan

- Upstream control chamber
- Water flow
- 3-pipe manifold
- Sump
- AquaCell unit assembly

Cross section A-A

- Geomembrane wrap with outer protective geotextile wrap
- AquaCell Core units
- AquaCell Plus units used as inspection access

What happens to the water?

1. The water level in the upstream control chamber rises.
2. During a storm event, the AquaCell storage assembly fills with water via the manifold feed connection.
3. After storm event, water flows back out of the AquaCell storage assembly, finding its own level, and into the downstream control chamber.
4. The water then flows through the vortex flow control valve.
Typical Details

AquaCell Units

On-Line Storage – Central Pipe Feed

Long section

1. The water level in the upstream control chamber rises.
2. AquaCell storage assemblies fill with water via the central pipe connection and percolate through the granular bedding material.
3. After storm event, water flows back out of the AquaCell storage assemblies, finding its own level, and into the downstream control chamber.
4. The water then flows through the vortex flow control valve.

Cross section A-A

- Coarse sand or non-angular granular material base and surround
- 14mm - 20mm single size granular bedding / backfill material
- Geomembrane to perimeter of construction
- Wrap the entire AquaCell unit assemblies with a geotextile wrapping as appropriate

Plan

Typical vent detail

- Open grating
- Ventilation box
- 150mm concrete surround
- Precast concrete chamber sections and cover slab
- Cover and frame

Typical vent detail

- Water flow
- Sump
- AquaCell unit assembly
- Wavin TwinWall half perforated pipe
- 150mm concrete surround
- Flow control
- Cover and frame

Water flow

- Water flow during storm event
- Water flow during storm event

Customer Services: 0844 856 5152
Technical Advice: 0844 856 5165

Wavin AquaCell Systems PIM

21x15
30
Off-Line Storage – Box Feed

What happens to the water?

1. Control chamber fills with water, up to the top of the weir wall.
2. The water overflows the weir wall and enters the AquaCell storage assembly via the AquaCell connection.
3. The AquaCell storage assembly fills with water.
4. After storm event, water flows back out of the AquaCell storage assembly, finding its own level, and through the non-return flap valve at the bottom of the weir wall.
5. The water then flows through the vortex flow control valve.
Off-Line Storage – Manifold Feed

What happens to the water?

1. Control chamber fills with water, up to the top of the weir wall.
2. The water overflows the weir wall and enters the AquaCell storage assembly via the manifold connection.
3. The AquaCell storage assembly fills with water.
4. After storm event, water flows back out of the AquaCell storage assembly, finding its own level, and through the non-return flap valve at the bottom of the weir wall.
5. The water then flows through the vortex flow control valve.
Off-Line Storage – Central Pipe Feed

Long section

Typical vent detail

Coarse sand or non angular granular material base and surround

AquaCell unit assembly

Wavin TwinWall half-perforated pipe

150mm concrete surround

Precast concrete chamber sections and cover slab

Ventilation box

Open grating

Cover and frame

Weir wall

Flow control

Water flow

Non-return flap valve

Plan

Wavin TwinWall half-perforated pipe

Water flow during storm event

14mm – 20mm single size granular bedding/backfill material

Water flow during storm event

Cross section A-A

What happens to the water?

1. Control chamber fills with water, up to the top of the weir wall.
2. The water overflows the weir wall and enters the AquaCell storage assemblies via the central pipe connection and percolate’s through the granular bedding material.
3. The AquaCell storage assembly fills with water.
4. After storm event, water flows back out of the AquaCell storage assemblies, finding its own level, and through the non-return flap valve at the bottom of the weir wall.
5. The water then flows through the vortex flow control valve
Typical Details
AquaCell Units

Soakaway or Storage Tank – With Silt Trap

Notes
For bedding specification information refer to page 22.

The silt trap can be used in conjunction with a soakaway (as shown) or a storage tank.

(Choice depends on application and site conditions)

For minimum depth of cover contact Wavin

110/100mm OsmaDrain or SuperSleve pipe + adaptor

Domestic Silt Trap (6LB300)

110/100mm OsmaDrain or SuperSleve pipe + adaptor

110/100mm OsmaDrain or SuperSleve pipe + adaptor
Wavin Stormwater Management
AquaCell Systems

To Achieve Optimum Stormwater Management

The Wavin Stormwater Management System represents a combination of specialist expertise and technology from Wavin. This is specifically focused on achieving the optimum solution for each project requiring effective and sustainable management of stormwater.

Such a solution may be entirely based on a tailored combination of our engineered systems.

In other cases, Wavin Stormwater Systems can be integrated with ‘soft’ SuDS techniques, such as ponds and swales, to help achieve the optimal solution.

Other Wavin Stormwater Systems

Oil Separators

A comprehensive range of NS Oil Separators, tested to EN 858 Class 1 standard and complying with PPG-3 legislation for England and Wales.

Channel Drainage

Environmentally-friendly polyester concrete systems to cover all EN 1433 load classes. With outstanding chemical resistance and low water absorption:
- Medium duty range for applications up to C250
- Heavy duty range for D400 / F900 application

Plastic Pervious Paving

High performance, plastic pervious paving system, for use in all types of Sustainable Drainage systems (SuDS).
- AquaGrid 50 – for use in landscape projects
- AquaGrid 75 – for use in car parking areas

Flow Control Valves

The Wavin-Mosbaek range of vortex flow control valves are manufactured from stainless steel and are custom-built to meet exact site requirements:
- Tornado, Hurricane and Typhoon stainless steel flow control valves with no moving parts of power needs

Anti-flood Valves

- Anti-Flood Valves that comply with EN 13546-1, and Part H1– Sections 2.6-2.12 of Building Regulations

Below Ground Water Transportation

Wavin Stormwater installations can draw from an extensive choice of plastic and clay water conveyance systems, including:
- OsmaDrain solid wall PVC-U pipe system
- Structured wall plastic UltraRib and TwinWall pipe systems
- SuperSleeve and HepSeal clay pipe systems

Other options include perforated pipe for land drainage: WavinCoil plastic and HepLine clay – and a full range of Wavin Non-Entry Inspection Chambers.

Rainwater Re-Use

The Wavin Stormwater Water Range can also exploit stored rain water. These reduce the use of potable mains water for non-potable purposes.

The Wavin Stormwater Service

Precision and Performance

The Wavin Technical team are ready to contribute to any stormwater management project.

This may be at the very earliest stage – or when initial plans have already been developed. There are no pre-conditions with regards to you requesting Wavin to become involved.

We are ready to:
- Originate project design
- Comment on an existing design
- Help validate a specification – or, where we see an opportunity to do so, to suggest how it may be enhanced
- Check, clarify and confirm maximum cost-efficiency, performance capability and regulatory compliance

This involvement is a core part of the Wavin principle. It extends beyond the systems and components.

To discuss your stormwater management project, call 0844 856 5161 or email technical.design@wavin.co.uk.
Product Details

Supplementary Items

Silt Trap – Domestic – for non loaded applications

![Domestic Silt Trap Diagram]

Domestic Silt Trap
- 250mm x 750mm depth
- With 110mm diameter inlet and outlet spigots
- For use with the 4D961 cover and frame

Material: PVC-U

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6LB300</td>
<td>A 250 B 750 C 330 D 305</td>
</tr>
</tbody>
</table>

Extension Piece for 6LB300

![Extension Piece Diagram]

Extension Piece for 6LB300
- 250mm x 500mm depth (effective length = 335mm)

Material: PVC-U

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6LB301</td>
<td>A 500 B 165</td>
</tr>
</tbody>
</table>

Silt Trap Bucket for 6LB300

![Silt Trap Bucket Diagram]

Silt Trap Bucket for 6LB300
- 200mm x 210mm depth

Material: PVC-U/Polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6LB302</td>
<td>A 597 B 208 C 114 D 127.5</td>
</tr>
</tbody>
</table>

Silt Trap – Trafficked

![Silt Trap Trafficked Diagram]

Silt Trap
- 500mm diameter x 1.25m depth
- 160mm diameter inlet and outlets

Material: Polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6LB600</td>
<td>A 500 B 1250 C 450</td>
</tr>
</tbody>
</table>
Ancillaries

S/S Adaptor
- 6UR socket x 160mm BS EN 1401 spigot

Material: PVC-U

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>6UR141</td>
<td>A 180 B 84 C 160</td>
</tr>
</tbody>
</table>

S/S Level Invert Reducer
- To 110mm OsmaDrain spigot

Material: PVC-U

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150x110</td>
<td>6UR099</td>
<td>A 115 B 95 C 111</td>
</tr>
</tbody>
</table>

S/S Adaptor
- 6TW socket x 160mm BS EN 1401 spigot

Material: PVC-U

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>6TW141</td>
<td>A 180 B 84 C 160</td>
</tr>
</tbody>
</table>
S/S Level Invert Reducer

- To 110 OsmaDrain

Material: PVC-U

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>6D099</td>
<td>A 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 70</td>
</tr>
</tbody>
</table>

P/E Adaptor

- 160mm spigot connection

Material: PVC-U

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>4D916</td>
<td>A 325</td>
</tr>
</tbody>
</table>

Flange Adaptor

- 6UR socket for connection of UltraRib to infiltration unit at positions other than preformed opening
- 9UR socket for connection of UltraRib to infiltration unit (can only be used with AquaCell Prime, Core and Plus)

Material: PVC-U

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>6LB104</td>
<td>A 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D 160.3</td>
</tr>
<tr>
<td>225</td>
<td>6LB106</td>
<td>A 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D 226.5</td>
</tr>
</tbody>
</table>
Spares

AquaCell Clip
- For jointing all AquaCell units horizontally

Material: Polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>6LB105</td>
</tr>
</tbody>
</table>

AquaCell Shear Connector
- For jointing all AquaCell units vertically

Material: Polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>6LB102</td>
</tr>
</tbody>
</table>

AquaCell Plus End Cap
- For blocking off unused inlets/outlets

Material: Polypropylene

<table>
<thead>
<tr>
<th>Nominal Size (mm)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>6LB201</td>
</tr>
</tbody>
</table>